

Optimum dietary crude protein level for Nile tilapia, Oreochromis niloticus, cultured in saline environment

¹Romi Novriadi, ¹Ani Leilani, ¹Mochammad Farkan, ^{1,2}Ilham, ¹Amyda S. Panjaitan, ³Atiek Pitoyo, ⁴Fitrina Nazar, ¹Margono, ⁵Susi Roselia, ¹Sultan M. Rusydi, ¹Adisti Rahmawati, ¹Nadya, ¹Lishilda L. Tatuwo

Department of Aquaculture, Jakarta Technical University of Fisheries (Politeknik Ahli Usaha Perikanan), Ministry of Marine Affairs and Fisheries, Republic of Indonesia, Jakarta, Indonesia; Department of Aquaculture Technology, Marine and Fisheries Polytechnic Jembrana, Pengambengan, Jembrana, Bali, Indonesia; Department of Aquaculture Technology, Marine and Fisheries Polytechnic Pangandaran, Babakan, Pangandaran, West Java, Indonesia; Department of Aquaculture Technology, Marine and Fisheries Polytechnic Pariaman, North Pariaman, West Sumatera, Indonesia; Main Center of Freshwater Aquaculture Development, Sukabumi, West Java, Indonesia. Corresponding author: R. Novriadi, novriadiromi@yahoo.com

Abstract. Nile tilapia (Oreochromis niloticus) is one of the most widely cultured fish globally due to its fast growth, its tolerance to a wide range of environmental conditions and its relatively low cost production process. The study aimed to determine the dietary crude protein level required for growing O. niloticus, cultured in a saline environment with salinity levels ranging from 6.14±0.78 g L⁻¹ to 6.37±0.31 g L⁻¹. A total of 270 tilapia were then stocked randomly into 24 aquaria tanks with the size of $75 \times 40 \times 40$ cm³ using a density of 15 fish per tank and fed with a target crude protein level of 28, 30, 32, 34, 36 and 38%. Each group was run with triplicates. Observations were carried out for 56 days, and parameters measured included final body weight (FBW), feed conversion ratio (FCR), thermal growth coefficient (TGC), percentage weight gain (PWG), survival rate (SR), biomass and proximate analysis of the whole body of fish. A completely randomized design was used for the study. All growth rates and feed efficiency had significant differences between treatments, with *O. niloticus* fed 34% CP having higher levels of FBW, TGC, PWG, and biomass compared to other treatments (P<0.05). For feed efficiency, the tilapia group fed 32, 34, and 36% had better FCR levels than other dietary treatments (P=0.0022). However, SR did not show a significant difference among the dietary treatments (P=0.7653). For nutrient deposition in the fish body, O. niloticus group fed 34% CP had a higher protein deposition level than other treatments, while the highest level of fat deposition was noticed in O. niloticus fed 32% CP. It was concluded that O. niloticus cultured in a salinity range from 6.14±0.78 g L⁻¹ to 6.37±0.31 g L⁻¹ required 34% CP for optimum growth and better protein deposition. **Key Words**: crude protein, growth performance, proximate.

Introduction. Nile tilapia (*Oreochromis niloticus*) is one of the most widely cultured fish globally due to several advantages: its fast growth, it can be grown under high densities, it feeds on a low trophic level, it tolerates a wide range of salinity, it has a relatively low cost production process, and it is widely accepted as food fish without any restriction by any religion (Arumugam et al 2023; Gu et al 2017; Prabu et al 2019; Stickney 1986; Watanabe et al 2002; Xu & Ming 2018). Its production is a cornerstone of aquaculture, particularly in tropical and subtropical regions (da Silva et al 2021; DeMaeseneer 1984; El-Sayed & Fitzsimmons 2023). Currently, over 135 countries are involved in *O. niloticus* culture with China, Egypt, Indonesia, Brazil, and Thailand as the main producers (Munguti et al 2022;

Sunarto et al 2022). The global export value of *O. niloticus* products is estimated as exceeding USD 2 billion annually (Fitzsimmons 2024), with the United States becoming the main importer, representing 35% of total tilapia imports (El-Sayed & Fitzsimmons 2023). Regarding the production system, *O. niloticus* can be produced using various systems, including open ponds, plastic ponds, concrete tanks, and floating net cages installed in rivers, reservoirs, and lakes (Lebel et al 2015; Mallasen et al 2012; Musa et al 2022; Yi 1999). Alternatively, production can also be carried out in locations with seawater intrusion, considering *O. niloticus*'s wide salinity tolerance character (Aththar et al 2020).

The ability of *O. niloticus* to adapt to saline environments is generally supported by the capacity of the integrated osmoregulatory function of numerous organs, especially the gills, digestive tract, and kidney (Cioni et al 1991). Moreover, the gills are vital structures in osmoregulation and ion exchange processes. Some functional changes, such as the gill and Na⁺K⁺ATPase activity, were observed during the adaptation of tilapia to saline water (Güner et al 2005). This process involves active transport, which uses adenosine triphosphate (ATP) energy to pump ions against gradients (Verbost et al 1994). Energy metabolism for osmoregulation is highly energy consuming (Tseng & Hwang 2008), and this process will considerably affect the energy needs to support the optimum growth of tilapia. Thus, increases in salinity will likely increase the energy demand of tilapia throughout the culture period.

Studies have been conducted on optimal protein requirements to support tilapia growth in the grow-out phase (Furuya et al 2023; Konnert et al 2022; Van Trung et al 2011). On average, it has been concluded that tilapia kept in freshwater environments require 26–30% protein (Meurer et al 2024). By using saline environment as the media to culture *O. niloticus*, it is necessary to evaluate the effect of the salinity on fish growth. Thus, the aim of this research was to determine the optimum protein level for *O. niloticus* to maintain an optimum growth rate in the juvenile phase in a saline environment. Apart from growth rate, research was also carried out to see the nutritional composition in the fish's body by providing feed with different protein levels. This fundamental study's results certainly have significant benefits for developing *O. niloticus* production in saline environments.

Material and Method

Experimental diets. The experimental feeds were designed to have different protein levels with target crude protein (CP) levels of 28, 30, 32, 34, 36, and 38%. The feed formulation is based on the commonly used formulation for O. niloticus. Feed with label of 28% CP was designed using 9.5% poultry by-product meal (PBM), 35.5% soybean meal (SBM), 10% corn distiller's dried grains with solubles (DDGS), and 10% cassava meal (CM) as protein sources. Feed with a crude protein level of 30, 32, 34, 36, and 38% were formulated by increasing the inclusion level of PBM by 12.5, 15, 18, 20.8, and 23.5%, respectively, obtained feed was labeled with 30, 32, 34, 36, and 38% CP. Apart from PBM, all raw materials have been used with the same inclusion level to all experimental feed, except for corn starch, which is reduced due to the addition of PBM into the diet formulation. All dry ingredients were carefully weighed and mixed in a paddle mixer (Marion Mixers, Inc., Marion, IA, USA) in a 100 kg batch, followed by grinding to a particle size of <200 µm using a disk mill (Jinan Shengrun China). Fish oil was then gradually added and mixed constantly. A twin extruder (Jinan Shengrun, China) was used to extrude the feed through a 2 mm die at a temperature gradient of 62, 80, and 110°C in three zones of the extruder barrel and the die head, respectively. All diets were oven-dried at 50-70°C in a pulse bed dryer (Jinan Shengrun, China). All finished diets were bagged and stored in a temperature-controlled room until further use. Proximate and amino acid profile of the diets were analyzed at Saraswanti Indo Genetech Laboratory, Bogor, West Java, Indonesia and summarized in Table 2.

Table 1 Formulation of experimental diets (%, as is) used to evaluate the effects of various protein levels to the growth of juvenile *Oreochromis niloticus* cultured in saline environment

Ingradiants	Experimental feed						
Ingredients	28% CP	30% CP	32% CP	34% CP	36% CP	38% CP	
Poultry by-product meal	9.50	12.50	15.00	18.00	20.80	23.50	
Soybean meal	35.50	35.50	35.50	35.50	35.50	35.50	
DDGS-Flint Hills	10.00	10.00	10.00	10.00	10.00	10.00	
Cassava meal	10.00	10.00	10.00	10.00	10.00	10.00	
Menhaden fish oil	2.00	2.00	2.00	2.00	2.00	2.00	
Soy oil	1.00	1.00	1.00	1.00	1.00	1.00	
Corn starch	16.90	13.90	11.40	8.40	5.60	2.90	
Wheat mids	15.00	15.00	15.00	15.00	15.00	15.00	
Mineral premix	2,50	2,50	2,50	2,50	2,50	2,50	
Vitamin premix	2,50	2,50	2,50	2,50	2,50	2,50	
Rovimix Stay-C 35%	0.10	0.10	0.10	0.10	0.10	0.10	
Total	100.00	100.00	100.00	100.00	100.00	100.00	

Experimental fish and feeding program. Larvae of O. niloticus were obtained from PT. Sinta Prima breeding center (Pasuruan, East Java) and then transported to the nursery facility at the Installation for Marine and Fisheries Field Practices, Jakarta Technical University of Fisheries located in Serang, Banten, Indonesia. The fish were acclimatized to the culture environment and fed with commercial feed for one month until reaching the suitable size. The acclimatized fish $(4.00\pm0.01~g$ initial mean weight) were then randomly distributed into 18 aquaria tanks with the size of $75\times40\times40~cm^3$ using density of 15 fish per tank. Three replicate groups of fish were administered different types of experimental diets using nutrition research standard protocol for 56 days and fed by hand four times daily, at 07:00, 11:00, 15:00, and 20:00. The amount of feed given to fish each day during the 56-day experimental period was based on historical data on O. niloticus growth and a feed conversion ratio of 1.5. Changes in the feed quantity ratio are then made if mortality occurs, or if there are changes in the water quality conditions of the culture media. Water quality observations are then carried out for physical parameters, which include pH, salinity, temperature, and dissolved oxygen; then chemical parameters, which include ammonium (NH₄) and nitrite nitrogen (NO₂-N).

Growth sampling. At the end of the feeding trial, the fish in each aquaria tank were counted, individually weighed to calculate the final biomass, final weight, percentage weight gain (PWG), feed conversion ratio (FCR), percentage survival (SR), and thermal unit growth coefficient (TGC) as follows:

$$PWG = \frac{(average\ individual\ final\ weight-average\ individual\ initial\ weight)}{(average\ individual\ initial\ weight)} \times 100$$

$$FCR = \frac{feed\ given\ (g)}{alive\ weigh\ gain\ (g)}$$

$$SR = \frac{final\ number\ of\ fish}{initial\ number\ of\ fish} \times 100$$

$$TGC = \frac{FBW^{1/3} - IBW^{1/3}}{\Sigma\ TD} \times 100$$

Where:

FBW - final body weight;

IBW - initial body weight;

T - water temperature (°C);

D - number of trial days.

Analysis of proximate and amino acid profile of shrimp. At harvest time or on the 56th day of the observation period, twenty fish per treatment, or five shrimp from each aquaria tank, were randomly sampled and stored at -80°C for body composition analysis. Prior to proximate, energy, and amino acid analyses, dried whole shrimp were rigorously blended and chopped in a mixer according to methods described by Helrich (1990). The proximate composition and amino acid profile of the whole shrimp body were analyzed at the Saraswati Indo Genetech Laboratory (Bogor, West Java, Indonesia).

Statistical analysis. The Shapiro-Wilk test assessed the normality of data distribution, and Brown-Forsythe's tests tested the homogeneity of variance before data analysis. Growth parameters were analyzed using regression and one-way analysis of variance (ANOVA) to determine significant differences among treatments, followed by Tukey's multiple comparison tests to determine the difference between treatment means among the treatments. All statistical analyses were conducted using the SAS system (V9.4. SAS Institute, Cary, NC, USA).

Results. The data in Table 2 shows that the protein level in the feed is determined by the design of the protein target, which is 28.44, 30.58, 32.37, 34.40, 35.99, and 38.29%, respectively. As for fat content, in general, it is the same, except that the fat content for 36% CP and 38% CP is slightly higher than that of other experimental diets, reflected in the energy content of the fat in the feed. For total calories, there is a tendency for the number of calories to increase as the protein level in the feed increases. For amino acid profiles, the levels are generally not significantly different. For threonine, the difference only occurred at CP 38% with a level of 1.27%, while other feeds had the same level, namely 1.24%. For lysine, there was an increasing trend when the protein level was increased, with each lysine level for 28, 30, 32, 34, 36, and 38% CP being at levels 2.04, 2.10, 2.08, 2.09, 2.03 and 2.03% in feed, respectively. Meanwhile, the same protein level sequence for methionine has concentrations of 0.48, 0.49, 0.50, 0.52, 0.53, and 0.52% in feed, respectively.

Table 2 Proximate and amino acid (AA) composition (% as is, dry matter basis) of experimental diets

Parameter	Unit	Init Nutritional profile of the experimental of				mental die	t			
	OTIL	28% CP	30% CP	32% CP	34% CP	36% CP	38% CP			
Proximate analysis										
Protein content	%	28.44	30.58	32.37	34.40	35.99	38.29			
Total fat	%	6.48	6.73	6.82	6.93	7.33	7.16			
Ash content	%	8.11	8.70	9.59	9.76	10.35	10.65			
Calorie from fat	Kcal 100 g ⁻¹	58.28	51.57	52.34	57.83	65.93	65.90			
Total calories	Kcal 100 g ⁻¹	354.52	363.73	370.50	372.87	375.87	379.34			
Moisture content	%	11.36	10.54	12.56	13.43	12.34	12.22			
Carbohydrate	%	45.12	45.97	41.17	37.99	36.65	34.70			
Amino acid profile										
L-Alanine	%	1.35	1.65	1.64	1.95	1.96	1.98			
L-Arginine	%	1.89	2.19	2.23	2.28	2.31	2.39			
L-Aspartic acid	%	2.64	3.08	3.11	3.44	3.47	3.54			
Glycine	%	1.33	1.43	1.40	1.86	1.87	1.86			

Parameter	l lmit	Nutritional profile of the experimental diet					t
	Unit	28% CP	30% CP	32% CP	34% CP	36% CP	38% CP
L-Glutamic acid	%	5.20	6.32	6.89	6.98	6.93	6.97
L-Histidine	%	0.80	0.91	0.87	0.86	0.95	1.02
L-Isoleucine	%	1.01	1.36	1.38	1.44	1.52	1.60
L-Cystine	%	0.77	0.76	0.83	0.87	0.91	0.92
L-Leucine	%	2.15	2.81	2.17	2.58	2.65	2.69
L-lysine	%	2.04	2.10	2.08	2.09	2.03	2.03
L-Methionine	%	0.48	0.49	0.50	0.52	0.53	0.52
L-Tryptophan	%	0.36	0.38	0.36	0.39	0.39	0.39
L-Valine	%	1.14	1.50	1.49	1.54	1.53	1.53
L-Phenylalanine	%	1.41	1.75	1.73	1.78	1.86	1.87
L-Proline	%	1.66	2.06	2.12	2.25	2.26	2.31
L-Serine	%	0.99	1.09	1.12	1.33	1.35	1.39
L-Threonine	%	1.22	1.24	1.24	1.24	1.24	1.27
L-Tyrosine	%	0.99	1.14	1.14	1.23	1.35	1.35

Water quality. During the 56 days of the observation period, the level of salinity, dissolved oxygen, temperature, and pH in the morning are in the range of 6.14 ± 0.78 g L⁻¹, 6.85 ± 0.42 mg L⁻¹, 28.61 ± 0.43 °C, and 7.41 ± 0.19 , respectively. Meanwhile in the afternoon, the levels of salinity, dissolved oxygen, temperature, and pH were in the range of 6.37 ± 0.31 g L⁻¹, 6.97 ± 0.40 mg L⁻¹, 29.05 ± 0.59 °C, and 7.45 ± 0.21 , respectively. For total ammonia nitrogen (TAN) and nitrite nitrogen (NO₂-N) were in the range of 0.154 ± 0.030 and 0.369 ± 0.031 mg L⁻¹, respectively.

Growth performance of fish. Feed with different crude protein (CP) levels had a significant effect to the final body weight, feed conversion ratio, thermal growth coefficient, percentage weight gain, and biomass of tilapia O. niloticus cultured in saline condition (P<0.05), but not on the survival rate. For growth parameters, it can be seen that tilapia fed with 34% CP had the most optimum growth rate, including final body weight (Figure 1), feed conversion ratio, thermal growth coefficient, percentage weight gain, and biomass, compared to other dietary treatments (P<0.05). In general, fish had better growth rates as protein levels increased from 28 to 34% CP, but the growth rates decreased when fish were fed with 36 and 38% CP compared to the growth performance of fish fed with 34% CP.

Proximate composition of the whole fish. Table 3 shows the proximate composition of *O. niloticus* at the end of the experiment.

Proximate composition of tilapia whole body

Table 3

		Experimental diet						
Parameter	Unit	28%	30%	32%	34%	36%	38%	
		CP	CP	CP	CP	CP	CP	
Ash content	%	3.70	2.86	1.51	2.80	3.96	2.95	
Calorie from fat	Kcal 100 g ⁻¹	14.18	21.74	27.69	12.69	14.22	20.75	
Total fat	%	1.58	2.42	3.08	1.41	1.58	2.31	
Moisture content	%	74.36	73.12	75.99	74.94	75.52	76.20	
Total calories	Kcal 100 g ⁻¹	95.64	108.18	105.41	96.09	89.98	94.95	
Carbohydrate	%	3.94	3.99	1.20	0.31	0.40	0.35	
Protein content	%	16.43	17.62	18.23	20.04	18.54	18.20	

Higher levels of protein deposited in the fish's body were found in fish fed 34% CP compared to treatments with protein levels in other feeds. However, for total fat, the highest level was in fish fed 32% CP, and the lowest was in fish fed 34% CP. Moisture content is in the same range, while the total energy deposited in the fish body is highest in fish fed at 30% CP, followed by 32 and 34% CP. Fish with the lowest total energy were found in the 36% CP treatment.

Discussion. Many species of *O. niloticus* are euryhaline, but their adaptability to salinity differs (Angadi 2024; Prunet & Bornancin 1989; Suresh & Lin 1992). O. niloticus is less tolerant compared to other species, such as Mozambique tilapia O. mossambicus (Velan et al 2011). Fish that live in brackish water conditions with fluctuation in salinity are required to regulate water and ions in their body through osmoregulation (Norstog et al 2022), and this process involves active transport of ions across cell membranes and requires energy (Norstog et al 2022; Tseng & Hwang 2008). This energy can mainly be obtained through feed that has a significant nutrient composition, such as proteins, carbohydrates, and lipids as the source of energy (Craig et al 2017; Machiels & Henken 1985; Saravanan et al 2012). These can then be metabolized to produce energy that is needed for several physiological processes and physical activities, including digestion, absorption, growth, reproduction, and other life processes (Craig et al 2017; Gatlin 2010). In terms of energy density, the average caloric values that proteins, carbohydrates, and lipids can provide are approximately 5.65, 4.15, and 9.45 kcal q⁻¹, respectively (Gatlin 2010). However, among these major nutrient groups, protein is the component most widely used for energy reserves by fish (Radhakrishnan et al 2020). Since protein also as the most expensive component in feed formulations compared to fat and carbohydrates, it is important to accurately determine the optimum protein level in feed (Ahmad et al 2004; Craig et al 2017).

Feeding with protein levels that cannot meet the specific nutritional and energy requirements will negatively impact the growth of aquatic organisms (Abdel-Tawwab et al 2010; Ali & Rawal 2022; Prabu et al 2020). Providing excessive amounts of protein will only increase the energy needed to metabolize protein into amino acids (Halver & Hardy 2003), and increased ammonium and unionized ammonia level in the culture environment (Abdel-Tawwab et al 2010; Lloyd et al 1978). Research conducted by Abdel-Tawwab et al (2010) showed an optimum growth of tilapia (initial body weight of 17-22 g) fed with 35% CP diet compared to 45% CP diet. Similarly in largemouth bass, fish tended to have a decreasing trend in daily weight gain when fed with 54% protein compared to 43.5% protein in the feed formulation (Portz et al 2001). Results of the current study also showed that the growth performance of O. niloticus decreased as dietary crude protein increased. In this study, culturing tilapia in salinity ranged from 6.14±0.78 g L⁻¹ in the morning and 6.37±0.31 g L⁻¹ in the afternoon required 34% CP in the diet formulation (Figure 1). The requirement on crude protein level is slightly higher compared to the CP level required by O. niloticus cultured in the freshwater environment, range from 25 to 30% dietary protein (El-Saidy & Gaber 2005; Hafedh 1999).

The difference in protein requirements for *O. niloticus* kept in a saline environment compared to fresh water can be related to the energy needed for osmotic regulation (Zhu et al 2022). Previous studies concluded that 10 to 50% of the energy consumption will be used for osmotic regulation in fish during the salinity adaptation (Islam et al 2020; Mozanzadeh et al 2021; Singha et al 2021; Wu et al 2021). Thus, appropriate amount of protein and energy in the diet will optimize the growth of tilapia. Regarding feed efficiency, in the present study, the lowest FCR levels were noticed in group of tilapias fed with 32, 34, and 36% CP, followed by 38 and 30% CP. The low FCR in tilapia fed 38% CP may be closely related to low feed intake compared to other feeds. According to Lazo et al (1998) fish fed with high protein diet have a tendency to eating less on a per weight basis, possibly due to the presence of nutrients, especially protein, and energy in feed already meets the needs of *O. niloticus* even though it is consumed less than feed with appropriate or lower level of protein.

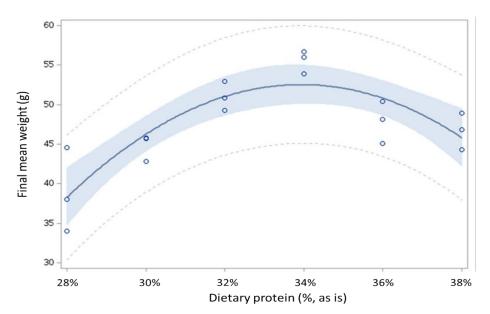


Figure 1. Response between final mean weight and dietary protein level (n=3, P-value=<0.0001, 0.95% confidence interval, $R^2 = 0.719651$).

Protein and fat deposition are the principal components required to evaluate the quality of fish (Caulton & Bursell 1977). In the present study, whole body protein was higher in fish fed 34% CP compared to other dietary treatment. The balance of the available amino acids in the dietary protein, and also appropriate amount of protein may promote greater protein deposition in fish (Bureau et al 2000). However, higher fat deposition was noticed in fish fed 32% CP, while fish fed 34% CP had the lowest fat deposition. Lower level of fat deposition in the whole body of *O. niloticus* fed with 34% CP could be due to the efficient use of fat as the supplemental energy to support the growth.

Conclusions. Six experimental feeds with different crude protein compositions were used to determine the optimum protein requirements for *O. niloticus* to maintain an optimum growth rate and the nutrient deposition during the juvenile phase in a saline environment, namely: 28, 30, 32, 34, 36, and 38% crude protein levels. In conclusion, the optimal crude protein level for tilapia *O. niloticus* cultured in a saline environment ranged from $6.14\pm0.78~g~L^{-1}$ to $6.37\pm0.31~g~L^{-1}$ was 34% CP based on the results of final body weight (FBW) and regression analyses of FBW.

Acknowledgements. The work was supported by grants from the Marine and Fisheries Human Resources Development and Extension Agency, Ministry of Marine Affairs and Fisheries, Republic of Indonesia (No. 213, Year 2024). The authors thank the Main Center for Freshwater Aquaculture Development in Sukabumi, West Java, Indonesia for their help to produce the experimental diet. Special thanks to students from the Aquaculture Technology Department of the Jakarta Technical University of Fisheries for their help in the feeding and sampling program.

Conflict of interest. The authors declare that there is no conflict of interest.

References

Abdel-Tawwab M., Ahmad M. H., Khattab Y. A., Shalaby A. M., 2010 Effect of dietary protein level, initial body weight, and their interaction on the growth, feed utilization, and physiological alterations of *Oreochromis niloticus* (L.). Aquaculture 298:267-274.

- Ahmad M. H., Abdel-Tawwab M., Khattab Y. A., 2004 Effect of dietary protein levels on growth performance and protein utilization in nile tilapia (*Oreochromis niloticus* L.) with different initial body weights. Arizona Aquaculture, pp. 1-5.
- Ali B., Rawal Y. K., 2022 Evaluation of optimum dietary protein requirement for maximum growth of common carp (*Cyprinus carpio*) fingerlings. Aquaculture Research 53(17):5915-5924.
- Angadi P., 2024 The physiological adaptations during salinity stress in Tilapia fish: A review. Acta Entomology and Zoology 5(2):54-57.
- Arumugam M., Jayaraman S., Sridhar A., Venkatasamy V., Brown P. B., Abdul Kari Z., Tellez-Isaias G., Ramasamy T., 2023 Recent advances in tilapia production for sustainable developments in Indian aquaculture and its economic benefits. Fishes 8(4):176.
- Aththar F., Bastiaansen J., Komen J., 2020 Improving growth and survival of tilapia in brackish water. Wias Annual Conference 2020: Frontiers in Animal Sciences. Wageningen University & Research, pp. 77-77.
- Bureau B. P., Azevedo P. A., Tapia-Salazar M., Cuzon G., 2000 Pattern and cost of growth and nutrient deposition in fish and shrimp: Potential implications and applications. Avances en Nutrición Acuícola V. Memorias del V Simposium Internacional de Nutrición Acuícola, Mérida, Yucatán, Mexico, pp. 111-140.
- Caulton M., Bursell E., 1977 The relationship between changes in condition and body composition in young Tilapia rendalli Boulenger. Journal of fish biology 11:143-150.
- Cioni C., De Merich D., Cataldi E., Cataudella S., 1991 Fine structure of chloride cells in freshwater-and seawater-adapted *Oreochromis niloticus* (Linnaeus) and *Oreochromis mossambicus* (Peters). Journal of Fish Biology 39:197-209.
- Craig S. R., Helfrich L. A., Kuhn D., Schwarz M. H., 2017 Understanding fish nutrition, feeds, and feeding. Virginia Cooperative Extension Publication, pp. 420-256.
- da Silva B. C., Pereira A., Marchiori N. d. C., Mariguele K. H., Massago H., Klabunde G. H. F., 2021 Cold tolerance and performance of selected Nile tilapia for suboptimal temperatures. Aquaculture Research 52:1071-1077.
- DeMaeseneer J., 1984 The culture of tilapia species in tropical and subtropical conditions. Tropicultura 2:19-25.
- El-Saidy D. M., Gaber M. M., 2005 Effect of dietary protein levels and feeding rates on growth performance, production traits and body composition of *Oreochromis niloticus* (L.) cultured in concrete tanks. Aquaculture Research 36(2):163-171.
- El-Sayed A. F. M., Fitzsimmons K., 2023 From Africa to the world—The journey of Nile tilapia. Reviews in Aquaculture 15:6-21.
- Fitzsimmons K., 2024 Prospect and potential for global production. CRC Press, pp. 51-72.
- Furuya W. M., Cruz T. P. d., Gatlin III D. M., 2023 Amino acid requirements for nile tilapia: An update. Animals 13(5):900.
- Gatlin III D. M., 2010 Principles of fish nutrition. Southern Regional Aquaculture Center, Publication No. 5003, 8 p.
- Gu D., Hu Y., Wei H., Zhu Y., Mu X., Luo D., Xu M., Yang Y., 2017 Nile tilapia (*Oreochromis niloticus*). Biological Invasions and Its Management in China 2:77-89.
- Güner Y., Özden O., Çağırgan H., Altunok M., Kizak V., 2005 Effects of salinity on the osmoregulatory functions of the gills in Nile tilapia (*Oreochromis niloticus*). Turkish Journal of Veterinary & Animal Sciences 29(6):1259-1266.
- Hafedh Y. A., 1999 Effects of dietary protein on growth and body composition of Nile tilapia (*Oreochromis niloticus*). Aquaculture research 30(5):385-393.
- Halver J. E., Hardy R. W., 2003 Nutrient flow and retention. Fish nutrition. Elsevier, pp. 755-770.
- Helrich K., 1990 Association of Official Analytical Chemists. Official methods of analysis of the Association of Official Analytical Chemists, 15th edition, Arlington, VA, 684 p. https://law.resource.org/pub/us/cfr/ibr/002/aoac.methods.1.1990.pdf

- Islam M. J., Slater M. J., Kunzmann A., 2020 What metabolic, osmotic and molecular stress responses tell us about extreme ambient heatwave impacts in fish at low salinities: The case of European seabass (*Dicentrarchus labrax*). Science of the Total Environment 749:141458.
- Konnert G. D., Gerrits W. J., Gussekloo S. W., Schrama J. W., 2022 Balancing protein and energy in Nile tilapia feeds: A meta-analysis. Reviews in Aquaculture 14(4):1757-1778.
- Lazo J. P., Davis D. A., Arnold C. R., 1998 The effects of dietary protein level on growth, feed efficiency and survival of juvenile Florida pompano (*Trachinotus carolinus*). Aquaculture 169(3-4):225-232.
- Lebel P., Whangchai N., Chitmanat C., Lebel L., 2015 Climate risk management in river-based Tilapia cage culture in northern Thailand. International Journal of Climate Change Strategies and Management 7(4):476-498.
- Lloyd L., McDonald B., Crampton E., 1978 Essential macroelements. Fundamentals of Nutrition. 2nd edition. WH Freeman and Company, San Francisco, CA, pp. 224-247.
- Machiels M., Henken A., 1985 Growth rate, feed utilization and energy metabolism of the African catfish, *Clarias gariepinus* (Burchell, 1822), as affected by dietary protein and energy content. Aquaculture 44(4):271-284.
- Mallasen M., de Barros H. P., Traficante D. P., Camargo A. L. S., 2012 Influence of a net cage tilapia culture on the water quality of the Nova Avanhandava reservoir, São Paulo State, Brazil. Acta Scientiarum. Biological Sciences 34(3):289-296.
- Meurer F., Novodworski J., Bombardelli R. A., 2024 Protein requirements in Nile tilapia (*Oreochromis niloticus*) during production and reproduction phases. Aquaculture and Fisheries 10(2):171-182.
- Mozanzadeh M. T., Safari O., Oosooli R., Mehrjooyan S., Najafabadi M. Z., Hoseini S. J., Saghavi H., Monem J., 2021 The effect of salinity on growth performance, digestive and antioxidant enzymes, humoral immunity and stress indices in two euryhaline fish species: Yellowfin seabream (*Acanthopagrus latus*) and Asian seabass (*Lates calcarifer*). Aquaculture 534:736329.
- Munguti J. M., Nairuti R., Iteba J. O., Obiero K. O., Kyule D., Opiyo M. A., Abwao J., Kirimi J. G., Outa N., Muthoka M., 2022 Nile tilapia (*Oreochromis niloticus*) culture in Kenya: Emerging production technologies and socio-economic impacts on local livelihoods. Aquaculture, Fish and Fisheries 2(4):265-276.
- Musa S., Aura C. M., Okechi J. K., 2022 Economic analysis of tilapia cage culture in Lake Victoria using different cage volumes. Journal of Applied Aquaculture 34(3):674-692.
- Norstog J. L., McCormick S. D., Kelly J. T., 2022 Metabolic costs associated with seawater acclimation in a euryhaline teleost, the fourspine stickleback (*Apeltes quadracus*). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 262:110780.
- Portz L., Cyrino J., Martino R., 2001 Growth and body composition of juvenile largemouth bass *Micropterus salmoides* in response to dietary protein and energy levels. Aquaculture nutrition 7(4):247-254.
- Prabu D. L., Ebeneezar S., Chandrasekar S., Tejpal, C., Kavitha, M., Sayooj P., Vijayagopal P., 2020 Influence of graded level of dietary protein with equated level of limiting amino acids on growth, feed utilization, body indices and nutritive profile of snubnose pompano (*Trachinotus blochii*) reared in low saline water. Animal Feed Science and Technology 269:114685.
- Prabu E., Rajagopalsamy C., Ahilan B., Jeevagan I., Renuhadevi M., 2019 Tilapia–an excellent candidate species for world aquaculture: a review. Annual Research & Review in Biology 31(3):1-14.
- Prunet P., Bornancin M., 1989 Physiology of salinity tolerance in tilapia:an update of basic and applied aspects. Aquatic Living Resources 2(2):91-97.

- Radhakrishnan G., Shivkumar V. S. M., Yashwanth B., Pinto N., Pradeep A., Prathik M., 2020 Dietary protein requirement for maintenance, growth, and reproduction in fish: A review. Journal of Entomology and Zoology Studies 8(4):208-215.
- Saravanan S., Schrama J. W., Figueiredo-Silva A. C., Kaushik S. J., Verreth J. A., Geurden I., 2012 Constraints on energy intake in fish: the link between diet composition, energy metabolism, and energy intake in rainbow trout. PloS One 7(4):e34743.
- Singha K. P., Shamna N., Sahu N. P., Sardar P., Harikrishna V., Thirunavukkarasar R., Chowdhury D. K., Maiti M. K., Krishna G., 2021 Optimum dietary crude protein for culture of genetically improved farmed tilapia (*Oreochromis niloticus*) juveniles in low inland saline water: Effects on growth, metabolism and gene expression. Animal Feed Science and Technology 271:114713.
- Stickney R. R., 1986 Tilapia tolerance of saline waters: a review. The Progressive Fish-Culturist 48(3):161-167.
- Sunarto A., Grimm J., McColl K. A., Ariel E., Nair K. K., Corbeil S., Hardaker T., Tizard M., Strive T., Holmes B., 2022 Bioprospecting for biological control agents for invasive tilapia in Australia. Biological Control 174:105020.
- Suresh A. V., Lin C. K., 1992 Tilapia culture in saline waters: a review. Aquaculture 106(3-4):201-226.
- Tseng Y. C., Hwang P. P., 2008 Some insights into energy metabolism for osmoregulation in fish. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 148(4):419-429.
- Van Trung D., Diu N. T., Hao N. T., Glencross B., 2011 Development of a nutritional model to define the energy and protein requirements of tilapia, *Oreochromis niloticus*. Aquaculture 320(1-2):69-75.
- Velan A., Hulata G., Ron M., Cnaani A., 2011 Comparative time-course study on pituitary and branchial response to salinity challenge in Mozambique tilapia (*Oreochromis mossambicus*) and Nile tilapia (*O. niloticus*). Fish Physiology and Biochemistry 37:863-873.
- Verbost P., Schoenmakers T., Flik G., Wendelaar Bonga S., 1994 Kinetics of ATP-and Na+gradient driven Ca²⁺ transport in basolateral membranes from gills of freshwater-and seawater-adapted tilapia. Journal of experimental biology 186(1):95-108.
- Watanabe W. O., Losordo T. M., Fitzsimmons K., Hanley F., 2002 Tilapia production systems in the Americas: technological advances, trends, and challenges. Reviews in Fisheries Science 10(3-4):465-498.
- Wu H. X., Li W. J., Shan C. J., Zhang Z. Y., Lv H. B., Qiao F., Du Z. Y., Zhang M. L., 2021 Oligosaccharides improve the flesh quality and nutrition value of Nile tilapia fed with high carbohydrate diet. Food Chemistry: Molecular Sciences 3:100040.
- Xu P., Ming J., 2018 Status and trends of the tilapia farming industry development. Aquaculture in China: Success Stories and Modern Trends 1:404-420.
- Yi Y., 1999 Modeling growth of Nile tilapia (*Oreochromis niloticus*) in a cage-cum-pond integrated culture system. Aquacultural Engineering 21(2):113-133.
- Zhu J., Chen L., Huang Y., Zhang F., Pan J., Li E., Qin J., Qin C., Wang X., 2022 New insights into the influence of myo-inositol on carbohydrate metabolism during osmoregulation in Nile tilapia (*Oreochromis niloticus*). Animal Nutrition 10:86-98.

Received: 05 February 2025. Accepted: 30 September 2025. Published online: 21 October 2025. Authors:

Romi Novriadi, Department of Aquaculture, Jakarta Technical University of Fisheries (Politeknik Ahli Usaha Perikanan), Ministry of Marine Affairs and Fisheries, Republic of Indonesia, Jl. Raya Pasar Minggu, Jati Padang, Jakarta– 12520, Indonesia, e-mail: novriadiromi@yahoo.com

Ani Leilani, Department of Aquaculture, Jakarta Technical University of Fisheries (Politeknik Ahli Usaha Perikanan), Ministry of Marine Affairs and Fisheries, Republic of Indonesia, Jl. Raya Pasar Minggu, Jati Padang, Jakarta–12520, Indonesia, e-mail: a.leilani@kkp.go.id

Mochammad Farkan, Department of Aquaculture, Jakarta Technical University of Fisheries (Politeknik Ahli Usaha Perikanan), Ministry of Marine Affairs and Fisheries, Republic of Indonesia, Jl. Raya Pasar Minggu, Jati Padang, Jakarta 12520, Indonesia, e-mail: mochfarchan2@gmail.com

Ilham, Department of Aquaculture Technology, Marine and Fisheries Polytechnic Jembrana, Pengambengan, Jembrana, Bali–82218, Indonesia, e-mail: ilham.fishaholic@gmail.com

Amyda Suryati Panjaitan, Department of Aquaculture, Jakarta Technical University of Fisheries (Politeknik Ahli Usaha Perikanan), Ministry of Marine Affairs and Fisheries, Republic of Indonesia, Jl. Raya Pasar Minggu, Jati Padang, Jakarta – 12520, Indonesia, e-mail: amypanjaitan@gmail.com

Atiek Pitoyo, Department of Aquaculture Technology, Marine and Fisheries Polytechnic Pangandaran, Babakan, Pangandaran, West Java- 46396, Indonesia, e-mail: atiek.bbl@gmail.com

Fitrina Nazar, Department of Aquaculture Technology, Marine and Fisheries Polytechnic Pariaman, North Pariaman, West Sumatera- 25562, Indonesia, e-mail: fitrina.rifqi@gmail.com

Margono, Department of Aquaculture, Jakarta Technical University of Fisheries (Politeknik Ahli Usaha Perikanan), Ministry of Marine Affairs and Fisheries, Republic of Indonesia, Jl. Raya Pasar Minggu, Jati Padang, Jakarta – 12520, Indonesia, e-mail: margono.bappl.stp@gmail.com

Susi Roselia, Main Center of Freshwater Aquaculture Development, Sukabumi, West Java- 43114, Indonesia, e-mail: susirosellia71@gmail.com

Sultan Muammar Rusydi, Department of Aquaculture, Jakarta Technical University of Fisheries (Politeknik Ahli Usaha Perikanan), Ministry of Marine Affairs and Fisheries, Republic of Indonesia, Jl. Raya Pasar Minggu, Jati Padang, Jakarta– 12520, Indonesia, e-mail: sultanammarmmr@gmail.com

Adisti Rahmawati, Department of Aquaculture, Jakarta Technical University of Fisheries (Politeknik Ahli Usaha Perikanan), Ministry of Marine Affairs and Fisheries, Republic of Indonesia, Jl. Raya Pasar Minggu, Jati Padang, Jakarta – 12520, Indonesia, e-mail: adistisyawal@gmail.com

Nadya, Department of Aquaculture, Jakarta Technical University of Fisheries (Politeknik Ahli Usaha Perikanan), Ministry of Marine Affairs and Fisheries, Republic of Indonesia, Jl. Raya Pasar Minggu, Jati Padang, Jakarta– 12520, Indonesia, e-mail: nadyadi952@gmail.com

Lishilda Lionora Tatuwo, Department of Aquaculture, Jakarta Technical University of Fisheries (Politeknik Ahli Usaha Perikanan), Ministry of Marine Affairs and Fisheries, Republic of Indonesia, Jl. Raya Pasar Minggu, Jati Padang, Jakarta– 12520, Indonesia, e-mail: lieshildatatuwo@gmail.com

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

How to cite this article:

Novriadi R., Leilani A., Farkan M., Ilham, Panjaitan A. S., Pitoyo A., Nazar F., Margono, Roselia S., Rusydi S. M., Rahmawati A., Nadya, Tatuwo L. L., 2025 Optimum dietary crude protein level for Nile tilapia, *Oreochromis niloticus*, cultured in saline environment. AACL Bioflux 18(5):2323-2333.